AGRO/ EMS 2051 Soil Science Lecture 3 Lab 2 Credits 4

Course Description

Prerequisite: CHEM 1002, 1212 or equivalent.

Principles of soil science; properties of soils related to plant growth and the environment.

Biology, chemistry and physics of soils. Includes genesis and classification, as well as widely practical applications of the basic sciences to crop production and environmental protection or restoration --soil survey, fertility, salinity, erosion and chemical pollution.

Course Objectives

Students will know and understand:

- 1 General components of soil and master soil horizons.
- Basis for assigning color and its biological and/or chemical significance; definition of texture, how it is measured (mechanical analysis and feel method), and its importance in crop production and to the environment; types of structure, how management affects it and its importance; definitions of density and porosity, how to measure these parameters, effects of management on them and their importance.
- That the chemical and physical weathering of rock yields particulate geologic materials that are altered in composition and disposition by the four processes of soil formation, which, in turn are controlled by the five factors of soil formation --parent material, climate, living organisms, relief, and time; major subordinate horizons.
- 4 Classification of soil by the USDA system, Soil Taxonomy, including hierarchy of the system, types of diagnostic horizons, and pedogenesis underlying the first hierarchal level, the 12 soil orders.
- 5 Types of information in hardcopy and web-based soil surveys and how to use this information.
- Concepts of soil water capillarity; components of soil water potential energy; moisture characteristic curve; soil water movement based on gravitational and matric-pressure potential, including the effect of hydraulic conductivity; effects of soil horizonation on water flow; traditional physical and biological definitions of soil water based on the moisture characteristic curve; chemical and physical factors affecting the shape of the moisture characteristic curve, thus amount of plant-available water.

Processes in the field hydrologic cycle; water conservation and use management, including aspects of drainage and irrigation engineering.

- 8 Composition of soil air, importance of soil aeration, use of redox potential to measure aeration level, and management of soil aeration; definitions and environmental importance of wetlands and hydric soils.
- 9 Factors affecting soil temperature, and daily and annual cycles of temperature.
- General types of soil colloids, the structure and properties of layer aluminosilicates, including types of charge, the phenomena and basis of ion exchange, soil-specific capacities for cation and anion exchange (CEC and AEC), and importance of these chemical reactions.
- Definition of pH, its importance, sources of H⁺ and OH⁻, pH buffering in soils, and how it is managed with base (e.g., lime) or acid (e.g., sulfur) amendments.
- Effect of salinity on plant growth, definitions of saline, sodic and saline sodic soils, and reclamation strategies for soil with high salt or sodium content.
- Relative numbers and biomasses of soil micro-flora and -fauna; rhizosphere effects on soil biology; types and importance of mycorrhizal fungi; important biochemical processes mediated by soil microfauna.
- 14 Carbon cycle and how alterations to it contribute to global climate change; decomposition rates of organic residues, including concepts of mineralization and immobilization, and factors affecting organic matter decomposition; composition of humus; importance of organic matter to crop production and environmental quality; composts and composting.
- Nitrogen cycle, including mineralization and immobilization, ammonium fixation, ammonia volatilization, nitrification, nitrate leaching, denitrification, and biological N fixation; S cycle, including oxidation / reduction reactions, and environmental problems associated with S oxidation.
- Phosphorus fertility limitations and the contrary problem of water quality degradation by P-induced eutrophication; fixation reactions of inorganic P, including factors affecting fixation; Importance of K to plants, sources of it and their relative plant-availability, excessive (luxury) uptake of K.
- Micronutrient deficiencies and toxicities, including effects of pH and redox potential on availability of micronutrients; micronutrient fertilization, including salt and chelated forms, applied to soil or plant canopy.

Nutrient best management practices; types and uses of organic and inorganic fertilizers; Liebig concept of the limiting factor; nutrient management, including plant and soil analyses; fertilizer application methods; economic considerations.

- Fate of organic and inorganic contaminants in the soil environment; sources of inorganic contaminants; remediation strategies, including bioremediation.
- Accelerated water erosion, including environmental effects and economic costs; mechanics of water erosion, including types and use of USLE and related models in water erosion control; mechanics of wind erosion, including environmental and economic costs; mechanics of wind erosion, including types and use of WEQ and related models in wind erosion control.

Procedures to Evaluate Objectives

- 1. Written exams over lecture and lab materials.
- 2. Quizzes over specific lecture and lab topics.

Detailed Topical Outline

<u>Lecture</u> <u>Corresponding Labs</u>

Introduction

Physical Properties Mechanical analysis by pipette method; particle density

Bulk density, gravimetric water content, volumetric water content

Soil Formation

Classification Profile descriptions at two sites of contrasting parent materials

Soil Survey Use of soil survey book

Soil Water Measure saturated hydraulic conductivity

Field Hydrologic Cycle

Aeration

Temperature

AGRO/EMS 2051	Soil Science Page 4
<u>Lecture</u>	Corresponding Labs
Colloidal Materials	Qualitative investigation of ion exchange and extraction of bases + acids for calculation of cation exchange capacity
pH Management	Qualitative investigation for presence of carbonates, assessing buffering, and quantitative determination of lime requirement
Salinity and Sodium	
Biology	Enumeration of colony forming using serial dilutions
Organic Matter	Extraction of humic and fulvic acids, and qualitative investigation of their behavior with respect to ion exchange and coagulation
Nitrogen and Sulfur	
Phosphorus and Potassium	
Micronutrients	
Nutrient Management	Mehlich 3 extraction for soil P, colorimetric analysis and use of results to make recommendations (includes N and K calculations)
Soil Pollution	
Water and Wind Erosion	
Course Materials	
Text	The Nature and Properties of Soils, 11 th , 12 th , 13 th or 14 th Edition N.C. Brady and R.R. Weil
Lab Manual	Provided
Other Materials	http://www.agronomy.lsu.edu/courses/agro2051/index.htm

Topics by Date, including Exams and Quizzes

M	W	F
	JANUARY 14 Introduction (Chapter 1)	16 Introduction Physical Properties (Chapter 4)
19	21 Physical Properties	23 Physical Properties
MLK Day Holiday		Quiz 1 Introduction / Physical Properties
26 Soil Formation (Chapter 2) Lab 1 Texture	28 Soil Formation	30 Soil Classification (Chapter 3) Quiz 2 Physical Properties / Soil Formation
2 FEBRUARY Soil Classification Lab 2 Density	4 Soil Survey (Chapter 19)	6 Soil Water (Chapter 5) Quiz 3 Soil Classification / Survey
9 Soil Water	11 Review Chapters 1, 2, 3, 4 and 19	13
Lab 4 Soil Survey	10	EXAM 1
16 Mardi Gras Holiday	18 Mardi Gras Holiday	20 Field Hydrologic Cycle (Chapter 6) Ouiz 4 Soil Water
23	25	27
Field Hydrologic Cycle Lab 5 Hydraulic Conductivity	Soil Air and Temperature (Chapter 7)	Soil Colloids (Chapter 8) Quiz 5 Water Cycle / Air and Temperature
2 MARCH	5	7
Soil Colloids LAB EXAM 1	Review Chapters 5, 6 and 7	EXAM 2
9 Soil Reaction (Chapter 9)	11 Soil Reaction	13 Salinity (Chapter 10)
Lab 6 Ion Exchange	10	Quiz 6 Colloids / Reaction
16 Soil Organisms (Chapter 11) Lab 7 pH and Liming	18 Soil Organisms	20 Organic Matter (Chapter 12) Quiz 7 Salinity / Organisms
23	25	27
Organic Matter Lab 8 Soil Biology	Review Chapters 8, 9, 10 and 11	EXAM 3
30	1 APRIL	3
Macronutrients (Chapters 13 and 14) Lab 9 Organic Matter	Macronutrients Quiz 8 Organic Matter / Macronutrients	Spring Break
6	8	10
Spring Rrook	Spring Brook	Spring Break
Spring Break 13	Spring Break	Spring Break
Macronutrients	Micronutrients	Nutrient Management (Chapter 16)
Lab Holiday		Quiz 9 Macro- / Micronutrients
20	22	24
Nutrient Management	Review Chapters 12, 13, 14 and 15	
Lab 10 Soil Fertility		EXAM 4
27	29	1 MAY
Soil Pollution (Chapter 18) LAB EXAM 2	Soil Erosion (Chapter 17)	MAKE LIDEVAM 1 2 2 am 4
LAD EAAWI 2	Quiz 10 Nutrient Management / Pollution 6	MAKE-UP EXAM 1, 2, 3 or 4
1		
4	0	EXAM 5

Location, Instructor Contact and Grading

Where Held

Lecture 134 Madison Sturgis Lab 241 Madison Sturgis

Contact

Instructor Lewis Gaston

Office 224 Madison Sturgis Lab 232 Madison Sturgis

Phone 578-1323

e-mail <u>lagaston@agctr.lsu.edu</u> Hours 9:30 - 10:20 MW

Grading

Scale		Components	Weight
90	A	Lecture	
80	В		
70	C	Quizzes	10 %
60	D	Exam $1-4$	40 %
80 70	F	Exam 5	20 %
		Lab	
		Quizzes / Exercises / Participation	10 %
		Exam 1 – 2	20 %
		Total	100 %

Comments on Exams, Quizzes and Make-Ups

Lecture

Lowest (one) mid-semester exam (1-4) dropped.

ONLY ONE MAKE-UP EXAM AND IT IS ON THE LAST DAY OF CLASS.

Lowest two quizzes dropped. **NO MAKE-UP QUIZZES.**

Lab

MAKE-UP EXAM TO BE ARRANGED WITH LAB INSTRUCTOR.

General Matters

Code of Student Conduct

It is the responsibility of all students to familiarize themselves with the Code of Student Conduct and other University rules and regulations governing student conduct and activities.

Academic Dishonesty

Academic dishonesty can result in probation, suspension, or expulsion from the course. For more information, refer to your handbook of responsibility in student university relationship or refer to the Code of Conduct that can be found in the Office of the Dean of Students website within the LSU home page.

Disabilities Statement

If you have special needs addressed by the Americans with Disabilities Act, please notify your instructor immediately for proper accommodations.