1. A Mahan series soil typically contains the following concentration of adsorbed cations:

Cation Concentration (cmol(+) kg $^{-1}$)

Al $^{3+}$ 1.0

Ca $^{2+}$ 2.0

H $^{+}$ 1.0

K $^{+}$ 0.3

Mg $^{2+}$ 0.6

Na $^{+}$ 0.1

A) What is the CEC of this soil?

CEC =
$$1.0 + 2.0 + 1.0 + 0.3 + 0.6 + 0.1 = 5.0 \text{ cmol(+) kg}^{-1}$$

B) What is its percentage base saturation?

% BS =
$$[(2.0 + 0.3 + 0.6 + 0.1) / 5.0] 100 \% = 60 \%$$

2. Given the below plate counts, what is the average number of CFUs per gram of this soil?

Expressing both measurements at the same dilution,

Average CFU = 0.5 x (200 + 300) x
$$10^6$$
 = 2.50 x 10^8 g_{soil}^{-1}

3. Assuming you wanted to apply 120 lbs of N per acre and used a 12-12-12 fertilizer that cost \$ 400 per ton (2000 lbs), how much would it cost to fertilize a 2 acre garden?

You need

2 ac x (120 #
$$_{\text{N}}$$
 ac⁻¹) / (0.12 x 2000 # N ton $_{\text{fertilizer}}$ ⁻¹) = 1 ton $_{\text{fertilizer}}$ costing

ton x
$$$400 \text{ ton}^{-1} = $400$$

4. Continuing with the above scenario, how much P and K are applied along with the 120 lbs of N per acre? Conversion factors for P_2O_5 and K_2O are 0.44 and 0.83, respectively.

P ac⁻¹ = (0.5 ton fertilizer / ac) x (0.12 x 2000 #
$$P_2O_5$$
 ton fertilizer -1) x 0.44 = 53 # P ac⁻¹

K ac⁻¹ = (0.5 ton fertilizer / ac) x (0.12 x 2000 # K_2O ton fertilizer -1) x 0.83 = 100 # K ac⁻¹