Example Calculations

Mechanical Analysis

The below data are for a mechanical analysis by the pipette method in which a 40.80 g of air-dry soil were dispersed in 1000 mL of water and two 50 mL aliquots taken. The air-dry moisture content of the soil was 2 % (0.02). What are the percents sand, silt and clay of the sample?

Mass Dish 1	= 50.00 g
Mass Dish 1 + Soil Residue 1	= 51.20 g
Mass Dish 2	= 52.00 g
Mass Dish 2 + Soil Residue 2	= 52.40 g

How to do it

The oven-dry mass equivalent of the air-dry soil was

 $m_{oven-dry} = 40.80 / (1 + 0.02) = 40.00 g$

The total mass of silt + clay was

 $m_{silt+clay}$ = 1.20 g x (1000 mL / 50 mL) = 24.00 g

The total mass of clay was

 $m_{clay} = 0.40 \text{ g x} (1000 \text{ mL} / 50 \text{ mL}) = 8.00 \text{ g}$

Therefore,

% clay = $[8.00 \text{ g} / 40.00 \text{ g}] \times 100 \% = 20 \%$

% silt + clay = $[24.00 \text{ g} / 40.00 \text{ g}] \times 100 \% = 60 \%$

% silt = 60 % - 20 % = 40 %

% sand = 100 % - 60 % = 40 %

Particle Density

The below data are for determination of particle density. Calculate the particle density.

Mass of picnometer	20.00 g
Mass of picnometer + air-dry soil	40.80
Gravimetric water content of the air-dry soil	0.04
Mass of picnometer + soil + water (picnometer filled with soil + water)	52.42 g
Mass of picnometer + water (picnometer filled with water)	40.00 g

How to do it

The oven-dry mass equivalent of the air-dry soil was

 $m_{oven-dry} = 20.80 / (1 + 0.04) = 20.00 g$

The volume of the picnometer filled with water when it also contained soil was

$$V_{water} = [52.42 g_{total} - 20.00 g_{solids} - 20.00 g_{picnometer}] / 1.00 g mL^{-1} = 12.42 mL$$

The total volume of the picnometer was

 $V_{\text{total}} = [40.00 \text{ g} - 20.00 \text{ g}] / 1.00 \text{ g mL}^{-1} = 20.00 \text{ mL}$

Therefore, the volume of soil solids was

 V_{solids} = 20.00 mL - 12.42 mL = 7.58 mL

Accordingly, the particle density of the soil was

 $\rho_{\rm S}$ = 20.00 g / 7.58 mL = 2.64 g mL⁻¹ or 2.64 g cm⁻³

Bulk Density

A 100 $\rm cm^3$ sample of field-moist soil weighed 180 g. After drying at 105 $^{\rm o}C$ for 24 h, it weighed 150 g.

What was the bulk density of the soil?

How to do it

 ρ_B = 150 g / 100 cm³ = 1.50 g cm⁻³

What were the gravimetric and volumetric water contents of the field-moist soil?

How to do it

GW = [180 g - 150 g] / 150 g = 0.20

VW = { $[180 \text{ g} - 150 \text{ g}] / 1.00 \text{ g cm}^{-3}$ } / 100 cm³ = 0.30

Assuming a particle density of 2.60 g, what was the porosity of the soil? Also, what fraction of the pore space was air-filled?

How to do it

Porosity = $1 - 1.50 \text{ g cm}^{-3} / 2.60 \text{ g cm}^{-3} = 0.42$

Air-filled porosity = total porosity - VW = 0.42 - 0.30 = 0.12

Thus, the fraction of the total pore space filled with air was 0.12 / 0.42 = 0.29

Hydraulic Conductivity

You determine the saturated hydraulic conductivity of two soils, X and Y, under the different conditions given below.

Υ

Х

Cross sectional area, A	10 cm ²	80 cm ²
Depth of soil, L	10 cm	5 cm
Constant depth of water, D	10 cm	15 cm
Average discharge rate, Q	10 cm ³ h⁻¹	16 cm ³ h ⁻¹

What are the saturated hydraulic conductivities, K, of soils A and B? Also, if one soil is a silt loam and the other is a clay loam, which is which?

How to do it

From Darcy's Law, $Q = KA\{[D + L] / L\},\$

 $K = Q / (A{[D + L] / L})$

 $K_{soilX} = 10 \text{ cm}^3 \text{ h}^{-1} / (10 \text{ cm}^2 \{[10 \text{ cm} + 10 \text{ cm}] / 10 \text{ cm}\}) = 0.50 \text{ cm} \text{ h}^{-1}$

 $K_{soilY} = 16 \text{ cm}^3 \text{ h}^{-1} / (80 \text{ cm}^2 \{ [15 \text{ cm} + 5 \text{ cm}] / 5 \text{ cm} \}) = 0.05 \text{ cm} \text{ h}^{-1}$

Thus, based on conductivities, soil X would be the silt loam and soil Y, the clay loam.

Air- and Water-Filled Pore Space (Degree of Water Saturation)

Continuing with the above, if 133.32 g of air-dry soil X were used, the gravimetric water content of the air-dry soil is 1 %, its particle density is 2.64 g cm⁻³, and the total wet mass of the soil was 177.00 g, what fraction of the pore space was filled with water?

How to do it

There were 177.00 g – $[133.32 \text{ g} / (1 + 0.01)] = 177.00 \text{ g} - 132.00 \text{ g} = 45.00 \text{ g}_{water}$ (or 45.00 cm³) in the wet soil.

The maximum volume of water that the sample could have contained is the total pore space, i.e., porosity x total volume,

 $(1 - \rho_B / \rho_S) \times V_T = [1 - (132.00 / 264.00)] \times 100.00 \text{ cm}^3 = 50.00 \text{ cm}^3 \text{ water.}$

So, only 45.00 / 50.00 = 0.90 of the total pore space was filled with water.